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Assessment:
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➢ Introduction, fundamentals and basic properties of signals and systems, 

definition of open loop and closed loop systems, mathematical models 

of physical systems (mechanical, electrical, electromechanical systems 

…), control system components, block diagram simplification, signal 

flow graph, state variable models, Z-Transform and its properties, 

solving difference equations, pulse transfer function of discrete system, 

Fourier transforms, continuous and discrete signal analysis, transient 

response of first and second order control systems, real life applications 

such as analog and digital filters, introduction to basics of digital signal 

processor (DSP) and its features and capabilities of commercial 

applications.
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Mathematical modeling of linear dynamic systems & transfer function

Block Diagram Fundamentals  

& 

Reduction Techniques



Decomposition



Alternate Representation: Cascade Form
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Alternate Representation: Cascade Form
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Alternate Representation: Parallel Form

( ) 24 12 24 12

( ) ( 2)( 3)( 4) ( 2) ( 3) ( 4)

C s

R s s s s s s s
= = − +

+ + + + + +

1 1

2 2

3 3

1 2 3

2                         12

          3             24

                      4 12
( )

x x r

x x r

x x r
y c t x x x

= − +

= − −

= − +
= = + +

 

2 0 0 12

0 3 0 24

0 0 4 12

 1 1 1

X X r

y X

−   
   

= − + −
   
   −   

=



Alternate Representation: Parallel Form Repeated roots

2 2

( ) ( 3) 2 1 1

( ) ( 1) ( 2)( 1) ( 2) ( 1)

C s s

R s s ss s s

+
= = − +

+ ++ + +

1 1 2

2 2

3 3

1 2 3

 

                      +2

               2
( ) 1 / 2

x x x

x x r

x x r
y c t x x x

= − +

=

= − +
= = − +

 

1 1 0 0

0 1 0 2

0 0 2 1

 1 1 / 2 1

X X r

y X

−   
   

= − +
   
   −   

= −



G(s) = C(s)/R(s) = (s2 + 7s + 2)/(s3 + 9s2 + 26s + 24)
This form is obtained from the phase-variable form simply by 
ordering the phase variable in reverse  order

Alternate Representation: controller canonical form
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Alternate Representation: controller canonical form

System matrices that contain the
coefficients of the characteristic
polynomial are called companion
matrices to the characteristic
polynomial.

Phase-variable form result in lower
companion matrix

Controller canonical form results in
upper companion matrix



Alternate Representation: observer canonical form

Observer canonical form so named for its use in the design of 
observers
G(s) = C(s)/R(s) = (s2 + 7s + 2)/(s3 + 9s2 + 26s + 24)

= (1/s+7/s2 +2/s3 )/(1+9/s+26/s2 +24/s3 )
Cross multiplying
(1/s+7/s2 +2/s3 )R(s) = (1+9/s+26/s2 +24/s3 ) C(s)
And C(s) = 1/s[R(s)-9C(s)] +1/s2[7R(s)-26C(s)]+1/s3[2R(s)-24C(s)]

= 1/s{ [R(s)-9C(s)] + 1/s {[7R(s)-26C(s)]+1/s [2R(s)-
24C(s)]}}



Alternate Representation: observer canonical form
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Note that the observer form has A matrix that is transpose of the
controller canonical form, B vector is the transpose of the
controller C vector, and C vector is the transpose of the controller
B vector. The 2 forms are called duals.



Feedback Control System Example

Problem Represent the feedback control 
system shown in state space. Model the 
forward transfer function in cascade 
form.

Solution first we model the forward 
transfer function as in (a), Second we 
add the feedback and input paths as 
shown in (b) complete system. Write 
state equations
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Feedback Control System Example
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State-space forms for

C(s)/R(s) =(s+ 3)/[(s+ 4)(s+ 6)].
Note: y = c(t)



Time Domain Analysis



Introduction

In time-domain analysis the response of a
dynamic system to an input is expressed as a
function of time.

It is possible to compute the time response of a
system if the nature of input and the
mathematical model of the system are known.

Usually, the input signals to control systems are
not known fully ahead of time.

It is therefore difficult to express the actual
input signals mathematically by simple
equations.



Standard Test Signals
The characteristics of actual input signals

are a sudden shock, a sudden change, a
constant velocity, and constant
acceleration.

The dynamic behavior of a system is
therefore judged and compared under
application of standard test signals – an
impulse, a step, a constant velocity, and
constant acceleration.

The other standard signal of great
importance is a sinusoidal signal.



Standard Test Signals

Impulse signal
The impulse signal imitate

the sudden shock
characteristic of actual
input signal.

If A=1, the impulse signal is
called unit impulse signal.
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Standard Test Signals

Step signal
The step signal imitate

the sudden change
characteristic of
actual input signal.

If A=1, the step signal
is called unit step
signal
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Standard Test Signals

Ramp signal
The ramp signal imitate

the constant velocity
characteristic of
actual input signal.

If A=1, the ramp signal
is called unit ramp
signal
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Standard Test Signals

Parabolic signal
The parabolic signal

imitate the constant
acceleration
characteristic of
actual input signal.

If A=1, the parabolic
signal is called unit
parabolic signal.
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Relation between standard Test Signals

Impulse

Step

Ramp

Parabolic
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Laplace Transform of Test Signals
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Laplace Transform of Test Signals
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Time Response of Control Systems

System

• The time response of any system has two components

• Transient response

• Steady-state response.

• Time response of a dynamic system response to an
input expressed as a function of time.



Time Response of Control Systems

•When the response of the system is changed from
equilibrium it takes some time to settle down.

• This is called transient response.

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6
x 10

-3

 

 
Step Response

Time (sec)

A
m

p
lit

u
d
e Response

Step Input

Transient Response

S
te

a
d
y
 S

ta
te

 R
e
sp

on
se

• The response of the
system after the
transient response is
called steady state
response.



Time Response of Control Systems

• Transient response depend upon the system poles
only and not on the type of input.

• It is therefore sufficient to analyze the transient
response using a step input.

• The steady-state response depends on system
dynamics and the input quantity.

• It is then examined using different test signals by
final value theorem.



Introduction
The first order system has only one pole.

Where K is the D.C gain and T is the time
constant of the system.

Time constant is a measure of how quickly a 1st

order system responds to a unit step input.

D.C Gain of the system is ratio between the
input signal and the steady state value of
output.
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Introduction
The first order system given below.

𝐺(𝑠) =
10

5𝑠 + 1

𝐺(𝑠) =
6

𝑠 + 2
=

6/2

1/2𝑠 + 1

• D.C gain is 10 and time constant is 5 seconds.

• For the following system

• D.C Gain of the system is 6/2 and time
constant is 1/2 seconds.



Impulse Response of 1st Order System

Consider the following 1st order system
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Impulse Response of 1st Order System

Re-arrange following equation as
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• In order to compute the response of the system in
time domain we need to compute inverse Laplace
transform of the above equation.
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Impulse Response of 1st Order System

Tte
T

K
tc /)( −=• If K=3 and T=2s then
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Step Response of 1st Order System

Consider the following 1st order system
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• In order to find out the inverse Laplace of the above
equation, we need to break it into partial fraction
expansion.



Step Response of 1st Order System

Taking  Inverse Laplace of above equation
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Step Response of 1st Order System

• If K=10 and T=1.5s then ( )TteKtc /)( −−= 1
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Step Response of 1st order System

System takes five time constants to
reach its final value.



Step Response of 1st Order System

• If K=10 and T=1, 3, 5, 7 ( )TteKtc /)( −−= 1
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Step Response of 1st Order System

• If K=1, 3, 5, 10 and T=1 ( )TteKtc /)( −−= 1
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Relation Between Step and impulse response

The step response of the first order 
system is

Differentiating c(t) with respect to t 
yields
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Analysis of Simple RC Circuit
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Analysis of Simple RC Circuit

Step-input response:

match initial state:

output response for step-

input:
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Example 1
Impulse response of a 1st order system is given

below.

Find out
Time constant T

D.C Gain K

Transfer Function

Step Response
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Example 1
The Laplace Transform of Impulse response of a

system is actually the transfer function of the
system.

Therefore taking Laplace Transform of the
impulse response given by following equation.
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Example 1
Impulse response of a 1st order system is given

below.

Find out
Time constant T=2

D.C Gain K=6

Transfer Function

Step Response
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Example 1
For step response integrate impulse response
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• We can find out C if initial condition is known e.g.
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Example 1
If initial conditions are not known then partial

fraction expansion is a better choice
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Ramp Response of 1st Order System

Consider the following 1st order system

1+Ts

K
)(sC)(sR

2

1

s
sR =)(

( )12 +
=

Tss

K
sC )(

• The ramp response is given as
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Parabolic Response of 1st Order System

Consider the following 1st order system
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Practical Determination of Transfer 
Function of 1st Order Systems 

Often it is not possible or practical to obtain a system's
transfer function analytically.

Perhaps the system is closed, and the component parts
are not easily identifiable.

The system's step response can lead to a
representation even though the inner construction is
not known.

With a step input, we can measure the time constant
and the steady-state value, from which the transfer
function can be calculated.



Practical Determination of Transfer 
Function of 1st Order Systems 

If we can identify T and K empirically we can obtain
the transfer function of the system.
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Practical Determination of Transfer 
Function of 1st Order Systems 

For example, assume the unit
step response given in figure.

• From the response, we can
measure the time constant,
that is, the time for the
amplitude to reach 63% of its
final value.

• Since the final value is about
0.72 the time constant is
evaluated where the curve
reaches 0.63 x 0.72 = 0.45, or
about 0.13 second.

T=0.13s

K=0.72

• K is simply steady state
value.

• Thus, transfer function
is obtained as:
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First Order System with a Zero

Zero of the system lie at -1/α and pole at -1/T.
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• Step response of the system would be:
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First Order System With Delays

Following transfer function is the generic
representation of 1st order system with
time lag.

Where td is the delay time.
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First Order System With Delays
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First Order System With Delays
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With Our Best Wishes
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